FOXA1: a transcription factor with parallel functions in development and cancer.
نویسندگان
چکیده
When aberrant, factors critical for organ morphogenesis are also commonly involved in disease progression. FOXA1 (forkhead box A1), also known as HNF3α (hepatocyte nuclear factor 3α), is required for postnatal survival due to its essential role in controlling pancreatic and renal function. In addition to regulating a variety of tissues during embryogenesis and early life, rescue experiments have revealed a specific role for FOXA1 in the postnatal development of the mammary gland and prostate. Activity of the nuclear hormone receptors ERα (oestrogen receptor α) and AR (androgen receptor) is also required for proper development of the mammary gland and prostate respectively. FOXA1 modulates ER and AR function in breast and prostate cancer cells, supporting the postulate that FOXA1 is involved in ER and AR signalling under normal conditions, and that some carcinogenic processes in these tissues stem from hormonally regulated developmental pathways gone awry. In addition to broadly reviewing the function of FOXA1 in various aspects of development and cancer, this review focuses on the interplay of FOXA1/ER and FOXA1/AR, in normal and cancerous mammary and prostate epithelial cells. Given the hormone dependency of both breast and prostate cancer, a thorough understanding of FOXA1's role in both cancer types is critical for battling hormone receptor-positive disease and acquired anti-hormone resistance.
منابع مشابه
FOXA1 defines cancer cell specificity.
A transcription factor functions differentially and/or identically in multiple cell types. However, the mechanism for cell-specific regulation of a transcription factor remains to be elucidated. We address how a single transcription factor, forkhead box protein A1 (FOXA1), forms cell-specific genomic signatures and differentially regulates gene expression in four human cancer cell lines (HepG2,...
متن کاملFOXA1 is an essential determinant of ERalpha expression and mammary ductal morphogenesis.
FOXA1, estrogen receptor alpha (ERalpha) and GATA3 independently predict favorable outcome in breast cancer patients, and their expression correlates with a differentiated, luminal tumor subtype. As transcription factors, each functions in the morphogenesis of various organs, with ERalpha and GATA3 being established regulators of mammary gland development. Interdependency between these three fa...
متن کاملFOXA1: master of steroid receptor function in cancer.
FOXA transcription factors are potent, context-specific mediators of development that hold specialized functions in hormone-dependent tissues. Over the last several years, FOXA1 has emerged as a critical mediator of nuclear steroid receptor signalling, manifest at least in part through regulation of androgen receptor and oestrogen receptor activity. Recent findings point towards a major role fo...
متن کاملSwitch in FOXA1 Status Associates with Endometrial Cancer Progression
BACKGROUND The transcription factor Forkhead box A1 (FOXA1) is suggested to be important in hormone dependent cancers, although with little data for endometrial cancer. We investigated expression levels of FOXA1 in primary and metastatic endometrial cancer in relation to clinical phenotype, and transcriptional alterations related to FOXA1 status. METHODS Protein expression of FOXA1 was explor...
متن کاملCurrent perspectives on FOXA1 regulation of androgen receptor signaling and prostate cancer
FOXA1 (also known as hepatocyte nuclear factor 3α, or HNF-3α) is a protein of the FKHD family transcription factors. FOXA1 has been termed as a pioneer transcription factor due to its unique ability of chromatin remodeling in which the chromatin can be decompacted to allow genomic access by nuclear hormone receptors, including androgen receptor (AR) and estrogen receptor (ER). In this review, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioscience reports
دوره 32 2 شماره
صفحات -
تاریخ انتشار 2012